Simpósio voltado para a área de bioprocessos premiou graduanda que desenvolveu um modelo com inteligência artificial para determinar em tempo real a concentração de microrganismos responsáveis pela produção de biossurfactantes

 

Superando até mesmo trabalhos de pós-graduação nacionais e internacionais, a aluna Caroline Dias Grossi, do Departamento de Engenharia Química e de Materiais (DEQM) do Centro Técnico Científico da PUC-Rio (CTC/PUC-Rio), foi premiada no XXI Simpósio Nacional de Bioprocessos/XII Simpósio de Hidrólise Enzimática de Biomassas, realizado em setembro, em Aracaju, com seu TCC (trabalho de conclusão de curso). A estudante desenvolveu um modelo matemático de redes neurais artificiais — um sensor virtual que alcançou 98% de precisão — com o objetivo de monitorar o desempenho da concentração de bacillus subtilis em fermentador.

 

O simpósio reuniu diversos pesquisadores de várias partes do mundo, que apresentaram trabalhos de conclusão de curso, dissertações de mestrado, teses de doutorado e pós-doutorado.  O trabalho da graduanda ganhou na categoria “Apresentação Oral”, que consistia em uma explicação do projeto em inglês, com duração de dez minutos, além das perguntas da banca científica. A partir de um experimento prévio com cascas de beterraba, resíduo inédito neste tipo de pesquisa, o projeto foi o único no simpósio que fez uso de inteligência artificial (entre os concorrentes do eixo temático de modelagem, instrumentação e controle de bioprocessos), fator que aumentou a complexidade do estudo e garantiu destaque ao trabalho.

 

Com o título “Development Of A Neural Network Model To Predict The Biomass Concentration In A Batch-Bioreactor For Biosurfactant Production”, a pesquisa deu sequência ao doutorado do orientador da aluna, o Prof. Brunno dos Santos, do Departamento de Engenharia Química e de Materiais do CTC/PUC-Rio, defendido em 2015, na Unicamp. Para sua pesquisa, o professor montou um experimento com casca de beterraba: um reator equipado com um fermentador que funcionava a partir do controle de diversas variáveis, como agitação e temperatura, por exemplo.

 

Durante o processo de fermentação da casca de beterraba, o microrganismo bacillus subtilis pode produzir biossurfactante, molécula que permite interação entre óleo e água. O desenvolvimento do microrganismo pode ser um indicador de uma boa manutenção do produto, porém suas análises de concentração no meio de fermentação são demoradas (cerca de 48 horas), o que dificulta tomada de decisão em tempo hábil.

 

O orientador já tinha todos os valores experimentais da pesquisa de 2015 e o papel da aluna foi modelar os experimentos a partir de redes neurais artificiais com o auxílio do Matlab (programa interativo que realiza diversos cálculos numéricos e está presente nas principais universidades e empresas do mundo). Com essa técnica de inteligência artificial, Caroline Grossi foi ajustando os parâmetros até chegar a um modelo eficiente e preciso para predizer a concentração de microrganismo no reator ao longo do tempo em que havia a produção de biossurfactante.

 

“Hoje em dia, as análises experimentais e gravimétricas deste processo demoram muito tempo para ficar prontas. Isso é prejudicial para a indústria alimentícia, por exemplo. Ao monitorar o crescimento do microrganismo, por meio do modelo matemático criado pela Caroline Grossi e alimentado com variáveis do experimento, foi possível monitorar o processo em tempo real e, assim, garantir que não houvesse perdas do produto”, explica o orientador Prof. Brunno dos Santos.

 

Depois do prêmio, outra conquista: o trabalho foi aprovado para ser escrito em forma de artigo científico para o IconBM 2018 (International Conference on Biomass) que vai acontecer na cidade de Bologna, Itália, em junho de 2018. Se aceito em definitivo pelo IconBM, o artigo será publicado no periódico Chemical Engineering Transactions. O Professor Brunno acredita que os próximos passos deverão focar na construção de mais modelos e na utilização de outras variáveis.

 

Informações para a imprensa:

APPROACH COMUNICAÇÃO

Assessoria de Imprensa do Centro Técnico Científico da PUC-Rio (CTC/PUC-Rio)

Maria Estrella (maria.estrella@approach.com.br)

Tels: (21) 9-9301-4332 / (21) 3527-1303, ramal 43 (CTC/PUC-Rio)

(21) 3461-4616, ramais 147 e 164 (Approach Comunicação)

Bianca Sallaberry (bianca.gomes@approach.com.br)

www.approach.com.br